SHRI RAMSWAROOP MEMORIAL UNIVERSITY

End Semester Examination (2021-22)-Odd Semester

BCA - I Year (I Sem)				
Course Name: Mathematics-I	Code: BMA1006			
Time: 02 Hours	Max Marks: 60			

University Roll No.															
(To be filled by the Student)												ent)			

Note: Please read instructions carefully:

- a) The question paper has 03 sections and it is compulsory to attempt all sections.
- b) All questions of Section A are compulsory; questions in Section B and C contain choice.

Section A: Very Short Answer type Questions Attempt all the questions.			CLO	Marks (10)
1.	Describe difference between matrix and determinant.	BL1	CLO1	02
2.	Find the value of the integral $\int x \sin x dx$.	BL1	CLO3	02
3.	Define Non-linear differential equation.	BL1	CLO3	02
4.	Is $f(x) = x^3$ continuous at $x = 2$?	BL1	CLO2	02
5.	Find the multiplicative inverse of $(\cos \theta + i \sin \theta)$.	BL1	CLO4	02
	ion B: Short Answer Type Questions mpt any 03 out of 06 questions.	BL	CLO	Marks (30)
1.	Evaluate: $\int \sec^3 x dx$.	BL2	CLO3	10
2.	Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$.	BL2	CLO1	10
3.	Find the value of $\int_{0}^{\pi/2} \frac{\sqrt{\tan x}}{\sqrt{\tan x} + \sqrt{\cot x}} dx.$	BL2	CLO3	10
4.	Verify that $y = ae^{2x} + be^{-x}$ is a solution of the differential	BL3	CLO3	10
	equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} - 2y = 0.$			
5.	Find the rank of the matrix $\begin{bmatrix} 2 & 3 & -1 & -1 \\ 1 & -1 & -2 & -4 \\ 3 & 1 & 3 & -1 \end{bmatrix}$.	BL2	CLO1	10
6.	Discuss the differentiability and continuity of the given function $f(x) = x-2 $ at $x=2$.	BL3	CLO2	10

Section C: Long Answer Type Questions.		BL	CLO	Marks
Attempt any 01 out of 04 questions.			CLO	(20)
1.	Investigate for consistency of the following equations and if possible,	BL4	CLO1	20
	find the solution:			
	x + y + z = 3			
	x + 2y + 3z = 4			
	x + 4y + 9z = 6			
2.	Describe order and degree of ordinary differential equation. Also solve	BL3	CLO3	20
	the differential equation : $\log\left(\frac{dy}{dx}\right) = (ax + by)$.			
3.	Prove that $\int_{0}^{\pi/2} \log \cos x dx = -\frac{\pi}{2} \log 2$ and find $\frac{dy}{dx}$ if	BL3	CLO3	20
	$y = (e^x \sin x + \sec x \cdot \log x).$			
4.	Find modulus, amplitude and square root of the following complex	BL3	CLO4	20
	number $1 + \sqrt{3}i$. Also express it in polar form.			
